
2023 Autor: Peter John Melton | [email protected]. Zuletzt bearbeitet: 2023-08-25 03:28

Die heutige Question & Answer-Sitzung wird von SuperUser bereitgestellt, einer Unterteilung von Stack Exchange, einer Community-basierten Gruppierung von Q & A-Websites.
Foto mit freundlicher Genehmigung von Lemsipmatt (Flickr).
Die Frage
SuperUser Reader AdHominem möchte wissen, warum x86-CPUs nur zwei von vier Ringen verwenden:
Linux and Windows based x86 systems only use Ring 0 for kernel mode and Ring 3 for user mode. Why do processors even distinguish four different rings if they all end up just using two of them anyway? Has this changed with the AMD64 architecture?
Warum verwenden x86-CPUs nur zwei von vier Ringen?
Die Antwort
SuperUser-Mitarbeiter Jamie Hanrahan hat die Antwort für uns:
There are two primary reasons.
The first is that, although the x86 CPUs do offer four rings of memory protection, the granularity of protection offered thereby is only at the per-segment level. That is, each segment can be set to a specific ring (privilege level) along with other protections like write-disabled. But there are not that many segment descriptors available. Most operating systems would like to have a much finer granularity of memory protection, like… for individual pages.
So, enter page table-based protection. Most, if not all, modern x86 operating systems more or less ignore the segmenting mechanism (as much as they can anyway) and rely on the protection available from the low-order bits in page table entries. One of these is called the “privileged” bit. This bit controls whether or not the processor has to be in one of the “privileged” levels to access the page. The “privileged” levels are PL 0, 1, and 2. But it is just one bit, so at the page-by-page protection level, the number of “modes” available as far as memory protection is concerned is just two: A page can be accessible from non-privileged mode, or not. Hence, just two rings. To have four possible rings for each page, they would have to have two protection bits in each page table entry to encode one of four possible ring numbers (just as do the segment descriptors). However, they do not.
The other reason is a desire for operating system portability. It is not just about x86; Unix taught us that an operating system could be relatively portable to multiple processor architectures, and that it was a good thing. And some processors support only two rings. By not depending on multiple rings in the architecture, the operating system implementers made the operating systems more portable.
There is a third reason that is specific to Windows NT development. NT’s designers (David Cutler and his team, whom Microsoft hired away from DEC Western Region Labs) had extensive previous experience on VMS; in fact, Cutler and a few of the others were among VMS’s original designers. And the VAX processor for which VMS was designed does have four rings (VMS uses four rings).
But the components that ran in VMS’s Rings 1 and 2 (Record Management Services and the CLI, respectively) were left out of the NT design. Ring 2 in VMS was not really about operating system security, but rather about preserving the user’s CLI environment from one program to the next, and Windows did not have that concept; the CLI runs as an ordinary process. As for VMS’s Ring 1, the RMS code in Ring 1 had to call into Ring 0 fairly often, and ring transitions are expensive. It turned out to be far more efficient to just go to Ring 0 and be done with it rather than have a lot of Ring 0 transitions within the Ring 1 code (again, not that NT has anything like RMS anyway).
As for why x86 implemented four rings while operating systems did not use them, you are talking about operating systems of far more recent design than x86. A lot of the system programming features of x86 were designed long before NT or true Unix-ish kernels were implemented on it, and they did not really know what the operating system would use. It was not until we got paging on x86 that we could implement true Unix-ish or VMS-like kernels.
Not only do modern x86 operating systems largely ignore segmenting (they just set up the C, D, and S segments with a base address of 0 and size of 4 GB; F and G segments are sometimes used to point to key operating system data structures), they also largely ignore things like “task state segments”. The TSS mechanism was clearly designed for thread context switching, but it turns out to have too many side effects, so modern x86 operating systems do it “by hand”. The only time x86 NT changes hardware tasks is for some truly exceptional conditions, like a double fault exception.
Regarding x64 architecture, a lot of these disused features were left out. To their credit, AMD actually talked to operating system kernel teams and asked what they needed from x86, what they did not need or did not want, and what they would like added. Segments on x64 exist only in what might be called vestigial form, task state switching does not exist, etc., and operating systems continue to use just two rings.
Haben Sie etwas zur Erklärung hinzuzufügen? Ton aus in den Kommentaren. Möchten Sie mehr Antworten von anderen technisch versierten Stack Exchange-Benutzern lesen? Hier geht es zum vollständigen Diskussionsthread.
Empfohlen:
Warum Sie SMS nicht für die Zwei-Faktor-Authentifizierung verwenden sollten (und was Sie stattdessen verwenden sollten)

Sicherheitsexperten empfehlen die Verwendung der Zwei-Faktor-Authentifizierung, um Ihre Online-Konten nach Möglichkeit zu schützen. Bei vielen Diensten wird standardmäßig eine SMS-Bestätigung verwendet. Sie senden Codes per SMS an das Telefon, wenn Sie versuchen, sich anzumelden. SMS-Nachrichten haben jedoch zahlreiche Sicherheitsprobleme und sind die am wenigsten sichere Option für die Zwei-Faktor-Authentifizierung.
Warum Windows 10 zwei verschiedene Versionen von Microsoft Office anbietet

Microsoft bietet zwei verschiedene Versionen von Office für Windows 10 an. Herkömmliche Desktop-Apps stehen für Tastatur und Maus zur Verfügung, Universal-Apps stehen zur Verfügung. So einfach ist das nicht.
Was ist die beste Möglichkeit, zwei Computer mit zwei Monitoren mit einer einzigen Tastatur und Maus zu steuern?

Wenn Sie zwei Computer mit zwei Bildschirmen haben und einfach mit einer einzigen Tastatur und Maus zwischen ihnen hin und her wechseln möchten, was ist der beste Weg, dies zu tun? Der heutige Q & A-Beitrag zu SuperUser enthält einige großartige Vorschläge für das himmlische Hardware-Setup des Lesers.
Kann ich zwei Arten von DDR3-RAM mit demselben Motherboard verwenden?

Die Möglichkeit, die Hardware Ihres Computers zu aktualisieren, ist immer eine gute Sache. Können Sie jedoch zwei Arten von DDR3-RAM auf demselben Motherboard verwenden, wenn Sie nur über begrenzte Ressourcen verfügen? Der heutige Q & A-Beitrag von SuperUser enthält die Antworten auf eine neugierige Leserfrage
Hallo Google, warum gibt es vier verschiedene Task-Apps?

Die neue Benutzeroberfläche von Google Mail wirkt auf der Oberfläche glänzend und neu, aber etwas stinkt nur. Die neue Task-App von Google Mail unterscheidet sich von Erinnerungen, die von Kalender, Posteingang und Assistent verwendet werden. Google hat zwei weitere Aufgaben-Apps - darunter auch eine, die nur für Ihre Einkaufsliste verwendet wird.